

DEVELOPMENT AND SYNTHESIS OF A NEW KIND OF LUMINESCENT MATERIAL FOR DOSIMETRY

Bouisri Samir

PHD thesis (start : october 2017)

Supervisor : Jérôme BOCH - Cathy GUASCH

Objective

Develop luminescent materials for dosimetry in order to realize thin layer and integrate them in a microelectronic process (SoC)

Using a reproductible and reliable manufacturing proccess

Overview of dosimetry

Historic in the laboratory SrS : Ce, Sm

Pros

- Good Sensivity and dynamics
 - 10 μGy to 300 Gy (saturation), linear to 100 Gy
- Compact

- Reproductiblity of the process and integrability
 - Powder (deposited by screen painting)
 - Sulfur (oxidation -> not inert)

OSL vs RPL

Optically Stimulated Luminescence

OSL (visible)

Electron trap center

Stimulation (IR)

A⁺ Hole trap center

▶ Ionizing radiation A⁰ Luminescent center

SrS: Ce,Sm

Radio-PhotoLuminescence

 $Al_2O_3:C,Mg$

Ionizing radiation

OSL vs RPL

OSL

Pros

- Can be reset by light beam
- Multiple readings...

Cons

- Fading (loss of information due to ambient temperature)
- ...but with loss of information

RPL

Pros

- No fading (deep trap)
- Multiple readings without loss of information

Cons

 Need to be annealed at high temperature to be reset

Specifications

in order to make an all integrated dosimeter

- Easy to integrate
- Can be reset without damaging the system
- Good sensitivity and dynamics
 - Depend on the aimed application
 - It will be easier to adjust this parameters, mastering the fabrication process
- Low fading

Silica materials

Compatible with microelectronic process

Amorphous silica

SiO₂: [Tb(NHSI)]

Terbium

- $\lambda_{emission}$ does not depend on the crystalline environment
- But a low molar absorptivity
 →Antenna effect : ligand (NHSI)

Aerogel and Xerogel

- Sol-gel process + supercritical drying (aerogel) or air drying (xerogel)
- Large emission area due to his high porosity
- Easily shapable

Thin layers

- deposited by spin coating
- 1500 2200 nm thick

Under UV (254 nm)

C.S.Stan and al, Journal of Sol-Gel Science and Technology 69 (2014) 207–213

Amorphous silica

First results

PL spectra under UV (254 nm)

- No RL observed under Xrays
 - Sensivity of the detection system ?
 - Other mechanism?
 - Fluorescence X
 - Quenching

Tb³⁺ radiative emissions

Crystalline silica

Quartz α

SiO₂ + traces of H, Li, Na, K, Al, Ga, Ti, Fe, Ge, P growing on a Si substrate with sol-gel process

- Radiation-induced defects in quartz
 - E₁' center : O vacancy (electron trap)
 - Al center : Al³⁺ in substitution of Si⁴⁺ (hole trap)
 - ...

F. Preusser and al, Earth-Science Reviews 97 (2009) 184-214

Conclusion

- We want to develop luminescent materials for dosimetry
- 2 types of materials are studied (amorphous silica and quartz)
- First results on amorphous silica didn't show any luminescence under Xrays
 - A more sensitive detection system based on a PM and an experiment to see if Xray fluorescence occurs in the material are in development
- Quartz samples are in development, first samples will be recieved in may

