The modeling of a proton detector for energies from 1MeV to 15MeV

Ja

Marine RUFFENACH 1st year PhD student **ONERA, DPHY department (Toulouse)**

Sébastien BOURDARIE (ONERA) Supervisor : **<u>Co-Supervisor</u>** : Jean-Roch VAILLÉ (IES – Montpellier) **CNES Supervisor :** Julien MEKKI

Context

- Radiation belts
- Electric propulsion

Detection of protons with an energy from 1MeV to 15MeV

- Design of the detector
- Response functions
- Counts of particles

Conclusion

1ec

Context

Radiation belts

First order approximation of the Earth's magnetic field

dipole model of the Earth's magnetic field McIlwain L-parameter

Context

Electric propulsion

- To position satellites on geostationary orbit
- More time in radiation belts
- Radiation models : AP8 (protons) and AE8 (electrons)
- Proton fluxes (1MeV 15MeV) under-estimated by AP8

Satellite with chemical propulsion

~ 1 week transfer time to geostationary orbit

Satellite with electric propulsion Up to 6 months transfer time to geostationary orbit

l'institut d'électronique

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

Design of the detector

- Mixed field of particles :
- => protons 1MeV-15MeV
- => protons E<1MeV and E>15MeV
- => electrons

Minimisation of energetic protons : shielding

Minimisation of electrons : shielding + magnet

Response functions

- GEANT4 simulations
- Spherical source
- Particles : 5 millions x 282 incident energies

Response functions

GEANT4 simulations Spherical source Particles : 5 millions x 282 256 channels : $0 MeV \rightarrow 11.5 MeV$ Ndetected Geometric $= 4\pi^2 R^2$ factor

protons anti-coincidence mode

incident

Response functions

18

protons anti-coincidence mode

Response functions

protons anti-coincidence mode

Response functions

20

protons anti-coincidence mode

Response functions

GEANT4 simulations Spherical source Particles: 5 millions x 282 256 channels : $0 MeV \rightarrow 11.5 MeV$

Ndetected Geometric $= 4\pi^2 R^2$ factor

protons coincidence mode

d'électronique

incident

Response functions

Response functions

ONERA

nes

Response functions

ONERA

cnes

Electron fluxes AE8

Counts of particles

Proton fluxes AP8

Electron fluxes AE8

Counts of particles

Proton fluxes AP8

27 Marine RUFFENACH – RADFAC 2018

ONERA

d'électronique

THE FRENCH AEROSPACE LAB

28 Marine RUFFENACH - RADFAC 2018

Detection of protons from 1 MeV to 15MeV 2 < L < 4</p>

- Measurements of some electrons @ L > 4
- Design still in progress
 - => Reduction of the background noise (p > 65MeV)
 - => Improvement of the magnet geometry : 2 plates

Thank you for your attention !

• Counts of particles as a function of L : anti-coincidence mode

nes

• Counts of particles as a function of L : coincidence mode

nes

Counts of particles

Counts of protons coincidence mode

l'institut d'électronique

Counts of particles

Counts of electrons

ies

l'institut d'électronique cnes

Counts of particles

Counts of protons over counts of electrons anti-coincidence mode

d'électronique

35 Marine RUFFENACH – RADFAC 2018

Counts of particles

Sum of counts of protons and electrons anti-coincidence mode

NERA

<u>les</u>

- Counts of particles
 - Counts of protons over protons with an energy > 50MeV

ies

l'institut d'électronique nes

37 Marine RUFFENACH – RADFAC 2018

Back-Up : Incident Energies of protons (MeV)

0 70	2 20	3 70	5 20	6 70	8 20	9 70	14 80	36.00	156.00
0.75	2.25	3.75	5.25	6.75	8.25	9.75	15.00	40.00	160.00
0.80	2.30	3.80	5.30	6.80	8.30	9.80	15.20	44.00	164.00
0.85	2.35	3.85	5.35	6.85	8.35	9.85	15.40	48.00	168.00
0.90	2.40	3.90	5.40	6,90	8.40	9,90	15.60	52.00	172.00
0.95	2.45	3.95	5.45	6.95	8.45	9.95	15.80	56.00	176.00
1.00	2.50	4.00	5.50	7.00	8.50	10.00	16.00	60.00	180.00
1.05	2.55	4.05	5.55	7.05	8.55	10.20	16.20	64.00	184.00
1.10	2,60	4.10	5.60	7.10	8,60	10.40	16.40	68.00	188.00
1.15	2,65	4.15	5.65	7.15	8,65	10.60	16.60	72.00	192.00
1,20	2,70	4,20	5,70	7,20	8,70	10,80	16,80	76,00	196,00
1,25	2,75	4,25	5,75	7,25	8,75	11,00	17,00	80,00	200,00
1,30	2,80	4,30	5,80	7,30	8,80	11,20	17,20	84,00	
1,35	2,85	4,35	5,85	7,35	8,85	11,40	17,40	88,00	
1,40	2,90	4,40	5,90	7,40	8,90	11,60	17,60	92,00	
1,45	2,95	4,45	5,95	7,45	8,95	11,80	17,80	96,00	
1,50	3,00	4,50	6,00	7,50	9,00	12,00	18,00	100,00	
1,55	3,05	4,55	6,05	7,55	9,05	12,20	18,20	104,00	
1,60	3,10	4,60	6,10	7,60	9,10	12,40	18,40	108,00	
1,65	3,15	4,65	6,15	7,65	9,15	12,60	18,60	112,00	
1,70	3,20	4,70	6,20	7,70	9,20	12,80	18,80	116,00	
1,75	3,25	4,75	6,25	7,75	9,25	13,00	19,00	120,00	
1,80	3,30	4,80	6,30	7,80	9,30	13,20	19,20	124,00	
1,85	3,35	4,85	6,35	7,85	9,35	13,40	19,40	128,00	
1,90	3,40	4,90	6,40	7,90	9,40	13,60	19,60	132,00	
1,95	3,45	4,95	6,45	7,95	9,45	13,80	19,80	136,00	
2,00	3,50	5,00	6,50	8,00	9,50	14,00	20,00	140,00	
2,05	3,55	5,05	6,55	8,05	9,55	14,20	24,00	144,00	
2,10	3,60	5,10	6,60	8,10	9,60	14,40	28,00	148,00	
2 1 5	3 65	5 1 5	6 65	8 1 5	9.65	14 60	32.00	152 00	

onera

Back-Up : Incident Energies of electrons (keV)

40.0000	60.0000	80.0000	100.000	120.000	140.000	160.000	180.000	200.000
340.000	360.000	380.000	400.000	420.000	440.000	460.000	480.000	500.000
640.000	660.000	680.000	700.000	720.000	740.000	760.000	780.000	800.000
940.000	960.000	980.000	1000.00	1020.00	1040.00	1060.00	1080.00	1100.00
1240.00	1260.00	1280.00	1300.00	1320.00	1340.00	1360.00	1380.00	1400.00
1540.00	1560.00	1580.00	1600.00	1620.00	1640.00	1660.00	1680.00	1700.00
1840.00	1860.00	1880.00	1900.00	1920.00	1940.00	1960.00	1980.00	2000.00
2140.00	2160.00	2180.00	2200.00	2220.00	2240.00	2260.00	2280.00	2300.00
2440.00	2460.00	2480.00	2500.00	2520.00	2540.00	2560.00	2580.00	2600.00
2740.00	2760.00	2780.00	2800.00	2820.00	2840.00	2860.00	2880.00	2900.00
3040.00	3060.00	3080.00	3100.00	3120.00	3140.00	3160.00	3180.00	3200.00
3340.00	3360.00	3380.00	3400.00	3420.00	3440.00	3460.00	3480.00	3500.00
3640.00	3660.00	3680.00	3700.00	3720.00	3740.00	3760.00	3780.00	3800.00
3940.00	3960.00	3980.00	4000.00	4020.00	4040.00	4060.00	4080.00	4100.00
4240.00	4260.00	4280.00	4300.00	4320.00	4340.00	4360.00	4380.00	4400.00
4540.00	4560.00	4580.00	4600.00	4620.00	4640.00	4660.00	4680.00	4700.00
4840.00	4860.00	4880.00	4900.00	4920.00	4940.00	4960.00	4980.00	5000.00
220.000	240.000	260.000	280.000	300.000	320.000			
520.000	540.000	560.000	580.000	600.000	620.000			
820.000	840.000	860.000	880.000	900.000	920.000			
1120.00	1140.00	1160.00	1180.00	1200.00	1220.00			
1420.00	1440.00	1460.00	1480.00	1500.00	1520.00			
1720.00	1740.00	1760.00	1780.00	1800.00	1820.00			
2020.00	2040.00	2060.00	2080.00	2100.00	2120.00	Ct	$an \cdot 201$	<u>(</u>)/
2320.00	2340.00	2360.00	2380.00	2400.00	2420.00	U U	σμ. 20i	/ て /
2620.00	2640.00	2660.00	2680.00	2700.00	2720.00		-	
2920.00	2940.00	2960.00	2980.00	3000.00	3020.00			
3220.00	3240.00	3260.00	3280.00	3300.00	3320.00			
3520.00	3540.00	3560.00	3580.00	3600.00	3620.00			
3820.00	3840.00	3860.00	3880.00	3900.00	3920.00			
4120.00	4140.00	4160.00	4180.00	4200.00	4220.00			
4420.00	4440.00	4460.00	4480.00	4500.00	4520.00			
4720.00	4740.00	4760.00	4780.00	4800.00	4820.00			

ONERA

THE FRENCH AEROSPACE LAB

Cones